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In this paper a nonlinear rule based fuzzy logic controller is proposed to control the nonlinear dynamic behavior of the 
probe tip of an atomic force microscope system (AFMs). At first, we use the bifurcation diagram to analysis the complex 
dynamic behavior of the atomic force microscope system, and show that the chaotic behaviour exists in the region 
of 54.23 >A . Next, in order to suppress the undesired motion in AFMs with uncertainty, we address the design schemes of 

fuzzy logic controller to stabilize the slave AFMs with parameter uncertainty to the master AFMs. Based on Lyapunov 
stability theory and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic 
synchronization are attained. We directly construct the fuzzy rules subject to a common Lyapunov function such that the 
error dynamics of master and slave AFMs satisfy stability in the Lyapunov sense. It overcomes the trial-and-error tuning for 
the membership functions and rule base in traditional fuzzy logic control. The effectiveness of presented method is 
numerically investigated by synchronizing slave AFMs which has chaotic motion or exceeding vibration amplitude to the 
master AFMs which is periodic motion or has small vibration amplitude. 
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1. Introduction 
 
Atomic force microscope (AFM) provides a powerful 

tool for surface analysis applications in the nano-
electronics, materials and biotechnology fields. The 
mechanism of AFM basically depends on the interaction of 
a microcantilever with surface forces. The tip of the 
microcantilever interacts with surface through a surface–
tip interaction potential. One approach to measure the 
surface forces is to monitor the deflection of the 
microcantilever through a photodiode. This approach is 
named “contact mode”. Another approach termed “tapping 
mode”, is performed by vibrating the microcantilever close 
to its resonance frequency and monitoring the changes in 
its effective spring constant. In this method, the driving 
amplitude is set to a constant value and typical resonant 
frequencies are in the range from a few kilohertz to some 
megahertz [2]. 

The nonlinear dynamic behavior of an AFM system is 
a major concern since any irregular motion of the AFM 
probe tip inevitably degrades the precision of the 
measurement results. Burnham et al. [1-2] showed that the 
microcantilever of an AFM performed chaotic motion 
under specific physical conditions. Ashhab et al. [3] 
modeled the microcantilever of an AFM using a single-
frequency mode approximation and analyzed the chaotic 
dynamics of the cantilever-sample system using the 
Melnikov method. Lee et al. [4] analyzed the effects of van 
der Waals and Derjaguin-Muller-Toporov forces on the 
tip-sample interactions induced in dynamic force 

microscopy (DFM). The authors also presented detailed 
experimental results which provided valuable new 
perspectives and insights into DFM. Ruetzel et al. [5] 
applied the Galerkin method to investigate the nonlinear 
dynamics of an AFM probe tip under the assumption that 
the tip-surface interactions were governed by Lennard-
Jones potentials.  Based upon their analysis, the authors 
showed that a microcantilever in tapping mode exhibited a 
broad range of dynamic phenomena, including both 
periodic and chaotic motion.  

The existence of chaotic motion in AFMs is highly 
undesirable for its performance since this type of complex 
irregular motion causes the AFM to give inaccurate 
measurements and low resolution of the achieved sample 
topography. Accordingly, it is always required to ensure 
good performance of the microscope and to eliminate the 
possibility of chaotic motion of the microcantilever either 
by changing the AFM operating conditions to a region of 
the parameter space where regular motion is enssured or 
by designing an active controller to remove the chaotic 
motion.. In 1999, Ashhab et al.[6] applied a proportional 
and derivative controller to AFMs, firstly. It computes the 
Melnikov function in terms of the parameters of the 
controller. Using this relation it is possible to design 
controllers that will remove the possibility of chaos in 
AFMs. Besides, In 2008, Arjmand et al. [7] used a 
nonlinear delayed feedback control to control chaos in 
AFMs. It showed that the chaotic behaviour of the AFMs 
is suppressed by stabilizing one of its first-order Unstable 
Periodic Orbits via sliding mode control.  
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Many methods have been presented for the control 
and synchronization of chaotic system [8-11]. However, 
none of the studies reviewed above presented a fuzzy 
controller to remove the chaotic motion in AFMs. 
Accordingly, the present study investigates the dynamic 
behavior of an AFM probe tip in tapping mode by 
reference to bifurcation diagrams and phase portraits of the 
tip displacement and tip velocity. Otherwise, Poincaré 
maps and maximum Lyapunov exponent are used to 
identify the onset of chaotic behavior in the AFMs system. 
In order to remove the chaotic motion or eliminate the 
exceeding vibration amplitude in AFMs, a controller with 
a set of fuzzy rules is designed for synchronizing the slave 
AFMs which included undesired behaviour to the master 
AFMs which is periodic motion or has small vibration 
amplitude. To overcome the trail-and-error tuning of the 
membership functions and rule base, we directly construct 
the fuzzy rules subject to a common Lyapunov function 
such that the error dynamics satisfies stability in the 
Lyapunov sense. Simulation results show that the proposed 
controller drives the slave AFMs to synchronize to the 
master AFMs. 

The remainder of this paper is organized as follows. 
Section 2 presents a system description for the time-
dependent motions of the microcantilever tip. Section 3 
describes the fuzzy logic controller design procedure in 
AFMs. Numerical simulations that confirm the validity and 
feasibility of the proposed method are shown in section 4. 
Finally, Section 5 draws some brief conclusions. 

 
 
2. Mathematical modelling  
  
The behavior of an AFM probe tip in which the tip-

surface interactions are governed by the Lennard-Jones 
potential function can be modeled using the following non-
dimensional single-degree-of-freedom model: [5] 
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In the above expression, t is the non-dimensional time, 

1x indicates the non-dimensionalized displacement of the 

microcantilever tip (where a positive value indicates a 
displacement towards the sample), 2x denotes the non-

dimensionalized microcantilever tip velocity of the 
microcantilever, and z is the vibrational amplitude of the 
dither piezoelectric actuator which drives the tip. Note that 
both 1x  and z are non-dimensionalized by the gap between 

the tip and the sample under equilibrium conditions. In the 
case where the excitation frequency is close to the natural 
frequency of the microcantilever, Ω=1. Furthermore, 

assuming a Si-Si probe-sample system, the coefficients in 
Eq. (2) have the following values: z=2.0, A1 = 4/27, A2 
=0.3, A4= 0.03 and A3 is from 0.1 to 3.0. The bifurcation 
diagrams of 1x  and 2x  are shown in Fig.1 (a) and 1(b), 

respectively. It shown that the system state exist complex 
dynamics. From local bifurcation diagram (Fig. 2), it can 
be seen that the dynamics of AFMs will change from 
periodic motion to aperiodic motion after the parameter 

3A  is greater than 2.54. The phase plane trajectories of 

periodic motions with 1.23 =A  (period T) and 2.23 =A  

(period 2T), and aperiodic motion with 6.23 =A  are 

shown in Fig. (3). From Fig. (4), it can be seen that in the 
Poincaré map exists a strange attractor, and a positive 
maximum Lyapunov exponent is obtained at 6.23 =A . 

Therefore, it guarantees that the AFMs fell into chaotic 
motion at this condition. 
 

 
(a) 

 
(b) 

Fig. 1. Bifurcation diagrams versus 3A : (a) x1(nT) and (b) 

x2(nT). 
 

 
Fig. 2. Local bifurcation diagram of  x1(nT) versus 3A . 
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(a) 

 
(b) 

 
(c) 

Fig. 3. The steady sate trajectories of AFMs ; (a) 1.23 =A , 

(b) 5.23 =A , (c) 6.23 =A  

 
(a) 

 
(b) 

 
Fig. 4. The strange attractor (a)  and maximum Lyapunov 

exponent (b) of chaotic motion with 6.23 =A . 

Consider two AFMs as follows  
Master system:  
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Slave system: 
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where RuÎ  is the control input. The master AFMs is a 
periodic motion and has good performance of the 
microscope in this study. 3AD  is an uncertain term or 

structural variation of 
3A . It may cause the original slave 

AFMs which is identical to the master AFMs to generate a 
great change such as from periodic motion to aperiodic 
motion or from period T to period 2T. Beside, 3AD  also 

can to increase the vibration amplitude of the micro-
cantilever of AFMs. Therefore, the 3AD   may cause the 

undesired behavior in AFMs for its bad effects on the 
system since it will lead the AFMs to give inaccurate 
measurements and low resolution of the achieved sample 
topography. The control input )(tu attached in slave AFMs 

will synchronize the slave system to master system, that is 
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where ×  is the Euclidean norm of a vector. This scheme 

can be used in the real AFM operation when the undesired 
motion comes into being.   
 

3. Fuzzy controller design 
 
The aim of this study is to apply the fuzzy logic 

control to AFMs. Fuzzy logic has come a long way since it 
was first presented to technical society, when Zadeh [12] 
published his seminal work “Fuzzy Sets” in the Journal of 
Information and Control. Since that time, the subject has 
been the focus of much independent research. The 
attention currently being paid to fuzzy logic is most likely 
the result of present popular consumer products employing 
fuzzy logic [13]. The superior qualities of this method 
include its simplicity, satisfactory performance and robust 
character. However, it takes a long time to obtain the 
membership functions and rule base by trial-and-error 
tuning in traditional FLC design. To overcome the trail-
and-error tuning of the membership functions and rule base, 
we directly construct the fuzzy rules subject to a common 
Lyapunov function such that the error dynamics satisfies 
stability in the Lyapunov sense. The basic configuration of 
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the fuzzy logic system is shown in Fig. 5. 
 

 
 

Fig. 5. The configuration of fuzzy logic controller. 
 
For the synchronization systems (3) and (4), let the error 
states are 111 xye -=  and 222 xye -= . Subtracting (3) 

from (4) yields the synchronization error dynamics as 
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tAAtAtg WW×D+W×D=D cossin)( 433 . 

Let the control input Leq uutu +=)(  and 

),( 11 yxfueq -= , then the error dynamics becomes 
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Where, )(tgD is the small system uncertainty of external 

excitation term for the base in the AFMs. In the real 
physical AFMs, it can be assumed to be bounded, that is  

a£D )(tg . 

In this study, Matlab Simulink with Fuzzy Toolbox is 
used. The aim of the fuzzy logic control system for the 
AFMs uses the errors ),( 21 ee  as the antecedent part of the 

proposed FLC to design the control input Lu  that will be 
used in the consequent part of the proposed FLC i.e.: 
 

),( 21 eeFLCuL = ,                         (8) 

 
where the FLC accomplishes the objective to stabilize the 
error dynamics (7).  

Table 1 lists the fuzzy rule base in which the input 
variables in the antecedent part of the rules are 1e  and 2e , 

and the output variable in the consequent is Liu . Using P, 

Z and N as input fuzzy sets representing ‘postive’, ‘zero’ 
and ‘negative’, respectively, we obtain the membership 
function shown in Fig. 6. The combination of the two input 
variables ),( 21 ee  forms n=9 heuristic rules in Table 1 and 

each rules belongs to one of the three fuzzy sets P, Z and N.  
The first rule in Table 1 is given as: 
IF 1e  is P and 2e  is P THEN output is 1Lu . 

All the rules are written using Mamdani method to apply to 
fuzzification in Fig. 6.  

 
Fig .6. Membership functions. 

 
In this study, the centroid method is used in 

defuzzification. 
From system (7), we select a Lyapunov function such that: 
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which is obviously positive and continuously differentiable. 
The corresponding requirement of Lyapunov stability [21] 
is 
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According the Lyapunov stability condition (10), the 
following case will satisfy all the stability conditions. 
Case1: 02 <e  

For 02 <e , the Eq.(10) becomes to  

 

12 ee ->& .                                   (11) 

 
Substituting Eq.(11) into Eq.(7) yields 

1241 )( eutgeAe L ->+D+-- , 

hence )(24 tgeAuL D-> . We can define that 

 
*
124 ueA =+a .                      (12) 

 
Case2: 02 >e   

For 02 >e , the Eq.(10) becomes to  

12 ee -<&                                (13) 

Substituting Eq.(13) into Eq.(7) yields 
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12412 )( eutgeAee L -<+D+--=& ,       (14) 

 
hence )(24 tgeAuL D-< . It is defined that 

*
224 ueA =-a .                                  (15) 

 
If the system satisfies the case1 and case 2, then 0<V&  and 
the error state will be asymptotically driven into zero. In 
order to achieve this result, we will design Lu  by rule 

table in the next work in this paper.   
According to the stability analysis method [8], only those 

fuzzy subsystems that corresponding to each rule need to 
be considered. From table 1, it can be seen that 1e , 2e  are 

belong to fuzzy sets P, Z and N  . The heuristic rules in 
Table 1 are divided into five parts to discuss the stability of 
each subsystem. For rules 1, 4 and 7 in table 1, the error 
state 2e  is positive, and 12 ee -<& and 

*
2741 uuuu LLL === . The corresponding derivative of 

the Lyapunov function in (10) is 
 

0)( 2122211 <+=+= eeeeeeeV &&&& .         (16) 

 
Similarly, for rules 3, 6 and 9 in table 1, the error state 2e  

is negative, and 12 ee ->& and *
1963 uuuu LLL === . The 

corresponding derivative of the Lyapunov function in (9) 
also satisfies 0<V& . 
 
Case3: 01 >e  and Î2e  zero      

For rule 2 in table 1, the error state 1e  is positive and 2e  

is zero. If the corresponding derivative of the Lyapunov 
function needs to be still kept negative in (10), then it 
needs to be satisfied 
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Because of 1e  is positive, then 

 
)sgn( 22 ee -<& .                                     (18) 

 
Substituting equation (18) into equation(7) yields 
 

)sgn()( 2241 eutgeAe L -<+D+-- .           (19) 

 
The above equation can be rewritten as  
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and it is defined that  
 

a-++-= 24122 )sgn( eAeeuL .                (21) 

 

Case4: 01 <e  and Î2e  zero      

The controller 8Lu  in rule 8 will be discussed similarly to 

rule 2 in table 1. Because of  1e  is negative then 
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Substituting equation(22) into equation(7) yields 
 

)sgn()( 2241 eutgeAe L ->+D+-- .             (23) 

 
The above equation can be rewritten as  

)()sgn( 2412 tgeAeeuL D-++-> ,         (24) 

and it is defined that  
 

a+++-= 24122 )sgn( eAeeuL .       (25) 

 
Case5: Î1e  zero and Î2e  zero      

For rule 5 in table 1, the error states 1e  and 2e is zeros. 

This condition is included in the other rules, and we define 
05 == LL uu  in this rule.  

Hence, all of the rules in the FLC can lead to Lyapunov 
stable subsystems under the same Lyapunov function (9). 
Furthermore, the closed-loop rule-based system (6) and (7) 
are asymptotically stable for each derivate of the Lyapunov 
function that satisfies 0<V&  in Table 1. That is, the states 

( )21,ee  guarantee convergence to zero and the two 

nonlinear master-slave AFMs is synchronized. 
 

4. Results and discussion 
 
In this section, some numerical experiments are 

presented to demonstrate and verify the performance of the 
present design. The 5th order Runge-Kutta algorithm was 
used to obtain the numerical solutions of systems (3) and 
(4) with a time grid of 0.001.  For the overall control 
systems (3) and (4), the parameters are A1 = 4/27, A2 
=0.3, 1.03 =DA , A4= 0.03, 1=W , 2=z , and the initial 

conditions are x1(0)=0, x2(0)=0, y1(0)=0, y2(0)=0.  
In the first case, the A3 is 2.1. From Fig. 2, it can be seen 

that the master system (3) is in a state of periodic motion 
with period T at this condition. However the slave system 
will be perturbed to another periodic motion with period 
2T and generated undesired larger vibration amplitude by 
the uncertainty term 3AD  under control input 0=u . In Figs. 

7-8, it shows that the slave system with period 2T will be 
synchronized to the master system with period T by FLC 
after the controller is active at 1500=t . In addition, the 
phase plane trajectories of controlled slave system and the 
error states are shown in Figs. 9-10. It can be seen that the 
system error states are regulated to zeros asymptotically.  
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Fig. 7. The time history of controlled periodic master (x1, 
x2) and chaotic slave (y1, y2) systems: (a) x1, y1 versus t; 
(b) x2, y2 versus t.  The controller is active from t=1500. 

 
 

Fig. 8. The controlled phase plane trajectory of slave 
system. The dashed line is period 2T and solid line is 
period T,  and  the  controller  is  active   from   point  A  
                                (t=1500). 

 

 
 

Fig. 9. The error state trajectories in phase plane 
trajectory of master-slave AFM system; the  controller  is  
                        active from point A (t=1500). 

 

Fig. 10. The time responses of synchronization error. 
 
 
In the second case, the A3 is 2.5. Fig. 2, shows that the 

master system (3) is in a state of periodic motion with 
period 2T at this condition. However the slave system will 
be perturbed to chaotic motion by the uncertainty term 3AD  

under control input 0=u . Figs. 11-14, show that the slave 
system with chaotic behavior will be synchronized to the 
periodic master system with period 2T by FLC after the 
controller is active at 1500=t . 

 

a 

 

b 

Fig. 11. The time history of controlled periodic master 
(x1, x2) and chaotic slave (y1, y2) systems: (a) x1, y1 
versus t ; (b) x2, y2 versus t. The controller is active from  
                                          t=1500. 
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Fig. 12. The controlled phase plane trajectory of slave 
system. The dashed line is chaotic motion and solid line 
is period 2T,  and  the controller  is  active from point A  
                                      (t=1500). 

 

 

Fig. 13. The error state trajectories in phase plane 
trajectory of master-slave AFM system; the controller is  
                   active from point A (t=1500). 

 

 

Fig. 14. The time responses of synchronization error. 
 

 
5. Conclusions 

 
In this study, the dynamic analysis and fuzzy logic 

synchronization control with parameter uncertainty for 

AFMs have been demonstrated. The main idea behind the 
proposed fuzzy logic controller is the great potential in 
active control in AFMs. Since the chaotic motion and 
enormous vibration amplitude are undesired in AFMs, the 
FLC is used to synchronize the slave system with 
undesired behavior to the master system with suitable 
behavior. The simulation results show that the 
implementation of fuzzy logic controller offers a good 
response as far as removing the undesired behavior in 
AFMs. Simulations results show that the proposed 
controllers have a satisfactory performance. 
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